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1. ABSTRACT 
Efficient fertiliser management requires information about the nutrient status of each management 
area or field. This information can be gathered by observing soil nutrients at a number of sites in 
the field. The quality of this information is dependent on the sampling strategy that is employed. 
The sampling strategies suggested in fertiliser recommendations such as RB209 are generally 
based on anecdotal evidence regarding the number of soil cores required or are designed to 
ensure that the errors in estimating soil nutrient concentrations are less than an arbitrarily defined 
threshold. Such strategies do not directly link the sampling effort to the consequences of erroneous 
soil nutrient information, which may include reduced profitability or the long term development of 
nutrient excess or deficiency. We develop a quantitative framework to study the effectiveness of 
different sampling designs so that rational sampling recommendations for phosphorus (P), 
potassium (K) and nitrogen (N) can be developed. 

For all nutrients, current recommendations suggest that measurements should be regularly spaced 
on a ‘W’ design which covers the field. Four alternatives to the ‘W’ are tested: an optimized sample 
configuration, stratified random sampling, rank set sampling and a clustered or bad practice 
design. We quantify the errors associated with each design, determine the management decisions 
that will be made by the farmer based on this erroneous information and then model the effects of 
these decisions. Thus we are able to relate the resources devoted to sampling to the expected 
profitability or long-term nutrient status of the field. 

Our study shows, that for a particular sampling effort, sample designs can be optimized to give 
smaller errors than the ‘W’ design. However we also find that the errors from estimating soil-
nutrient status with a ‘W’ are not large enough to substantially affect the quality of soil nutrient 
management. This is because once a certain accuracy in estimating soil-nutrient concentrations 
has been achieved, the quality of the management recommendations are limited by other sources 
of uncertainty in predicting the amount of nutrients the crops will access from the soil. Therefore 
the benefits of using optimized designs do not outweigh the extra complexity which they entail. If in 
the future fertiliser recommendations are more sensitive to soil information, say for example if 
nitrous oxide emissions had to be carefully controlled, then the use of optimized sample designs 
should be re-explored.  

We find that in the scenarios explored in this project, decisions regarding K require less accurate 
information than P. A bulked sample every four years of 10 soil cores is sufficient to maintain both 
soil P and K stocks within a target range. This is less than half of the number of cores which is 
currently recommended. For N, rational sampling effort varies according to the expected SNS in 
the field, and the field size. Bulked samples of 10-15 soil cores are adequate for most fields. 
Including more than 10 cores in the bulked sample is warranted when fields are larger than 20 ha 
or if SNS is expected to be high (>160 kg/ha). The largest financial benefit from sampling occurs 
when soil nitrogen supply is around 175 kg/ha since at these concentrations the yield is most 
sensitive to sampling errors and erroneous decisions. There is a smaller benefit when the expected 
SMN is much larger or much smaller since in these circumstances it is clear that either a small or 
large amount of N fertiliser should be added. We determine the circumstances in which SMN 
measurement and the use of barometer fields are cost effective in comparison to prior knowledge 
of SMN. We do not consider alternative methods of estimating soil nitrogen supply such as the 
Field Assessment Method. 

The framework developed in this project is not only suitable to assess the cost-effectiveness of 
different sampling designs under current fertiliser recommendations but also to develop and 
assess the cost-effectiveness of modifications to these recommendations.  
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2. SUMMARY 

2.1. Introduction 
Efficient fertiliser management requires information about the soil-nutrient status within each 
management area or field prior to fertiliser additions. The soil-nutrient status can be estimated by 
bulking a number of soil cores from different sites within a field. The accuracy of such an estimate 
increases with the number of cores extracted but so do the time taken and the costs of sampling. 
Current recommendations for soil sampling are based primarily on anecdotal evidence of what 
sampling is sufficient. They do not relate the sampling effort to the consequences of erroneous soil 
nutrient information. These consequences might include reduced profitability or the long term 
development of nutrient excess or deficiency. 

RB209 suggests that for phosphorus (P) and potassium (K) a bulked sample of 25 cores will be 
adequate for a uniform area and that a ‘W’ design will ensure an even distribution over the whole 
field. For soil mineral nitrogen (SMN), RB209 suggests a minimum of 10 individual sub-samples 
should be taken from the sampled area and more if practically feasible. The HGCA Nitrogen for 
winter wheat – management guidelines suggest at least 15 cores in each field where SMN analysis 
is undertaken and 20 in more variable fields. Both RB209 and the HGCA guidelines emphasize 
that costs of SMN analysis will prohibit sampling in every field and that sampling is most worthwhile 
where large and uncertain soil nitrogen residues are expected. 

We showed in a previous HGCA project that it is possible to optimize the sample designs to 
perform better than the ‘W’ in terms of sampling errors per core taken. However such schemes 
might not be as simple to implement in the field. These factors suggest there is a need to assess 
the sampling requirements for soil nutrient management so that the best sampling design and the 
rational sampling effort (i.e. number of cores) can be determined. 

 

2.2. A framework for assessing sampling requirements for nutrient 
management 

Field experiments to compare the relative merits of different sample designs would require an 
impractical number of soil cores to be extracted and analysed. Therefore a computer-based 
framework to compare sample designs is developed in this study. Typical patterns of the variation 
of soil nutrients are simulated based on existing datasets. These simulations are sampled and the 
mean soil nutrient requirement is estimated according to the various proposed sample designs. 
The implications of basing fertiliser management on these estimated values are explored and 
compared using mathematical models of soil nutrient management decisions, soil nutrient 
dynamics and crop responses to nutrients. 
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2.3. Comparison of different sample designs for estimating field-mean 
soil nutrient status. 

The simulation tests confirmed that optimized sample designs do estimate the field-mean P, K and 
SMN concentration more efficiently than the ‘W’ design. However the improvement in efficiency is 
only substantial when more than 15 cores are bulked. It was found that the accuracy of the ‘W’ 
design is sufficient for current fertiliser recommendations. However if future fertiliser 
recommendations require more precise fertiliser management, such as if nutrient leaching or 
nitrous oxide emissions have to be more carefully controlled, then the use of optimized sample 
designs should be reconsidered. 

 

2.4. Sampling recommendations for soil nutrient status 
The sampling tests suggest that 10 bulked cores selected from a ‘W’ design every four years are 
sufficient to maintain soil P and K concentrations within the ideal RB209 index. The number of 
cores required is largely independent of field size and is less than half of the number of cores 
currently recommended.  

For SMN, 10-15 cores are adequate for most fields. More than 10 cores are warranted for large 
fields (>20 ha) where SNS is expected to be high (>160 kg/ha). Sampling requirements increase 
with field size and 23 cores would be most cost-effective for a highly variable 60 ha field. We do 
that envisage that such fields are common in the UK. The study suggests that for some small fields 
where SNS is likely to be small or moderate (below 120 kg/ha) a bulked sample consisting of fewer 
than 10 cores is most cost-effective. However in such circumstances it is likely that the field 
assessment method would be used in preference to direct measurements. Therefore where SMN 
is measured we recommend that a bulked sample should be formed from 10-15 cores which are 
located on a ‘W’. The use of barometer fields is seen to be efficient for small target areas with low 
variability such as clusters of small fields where N requirements are not expected to differ. More 
widespread sampling should be considered in other circumstances. 

The scenarios and models for P and K in this project were relatively robust. However the scenarios 
for SMN required assumptions about the price of wheat and fertiliser and the quality of the 
practitioner’s prior knowledge of nutrient stocks. If these assumed values change or if more 
information of the complex dynamics of SMN become available then the sampling 
recommendations should be recalculated. Alternative methods of estimating soil nitrogen supply 
such as the Field Assessment Method are not considered here but are addressed in HGCA Project 
3425 Establishing best practice for SNS estimation. 
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2.5. Delineation of regions of soil-nutrient excess or deficiency within 
fields 

Previous studies have demonstrated the potential for regions of soil-nutrient excess or deficiency 
to appear in fields under uniform management. These might arise because of variation in yield and 
hence nutrient off take. There is a need to identify these regions so that limitations on yield and 
excessive emissions to the environment can be avoided. In surveys of soil pollution, sequential 
sweep-out methods are used to efficiently identify pollution hotspots. These methods adopt an 
efficient bulking strategy to reduce the laboratory costs of conducting the survey. However we 
found them to be ineffective for soil-nutrient surveys because the variation of the nutrients is much 
less extreme than the variation of contaminants observed close to sources of pollution. 

 

2.6. Future application of the computer-based framework 
The framework used to assess sample designs in this framework could be extended to compare 
and evaluate future fertiliser management recommendations. This would require extensive 
analyses of existing soil-nutrient data and perhaps further field experiments to determine the 
relationships between soil nutrient status, fertiliser additions and crop yields under various soil and 
climate conditions. Such issues have been addressed in HGCA Project 3425 Establishing best 
practice for SNS estimation. Critically the uncertainty associated with these relationships should be 
quantified. It is also important to understand how the relationships can be scaled from experimental 
plots up to the field or farm scale. The framework developed in this project would then be suitable 
to process this information and rationally determine the most cost-effective fertiliser management 
procedures. It would also be possible to devise recommendations which efficiently combine SMN 
observations with the Field Assessment Method or to develop decision support systems for 
individual farms which, over a number of seasons, adapt recommendations to the specific needs of 
the farm. 
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3. TECHNICAL DETAIL 

3.1. Introduction 
Efficient fertiliser management requires accurate knowledge of the soil nutrient status and the 
potential to supply nutrient to the crop. At the field-scale this knowledge is commonly acquired by 
bulking a number of soil cores extracted from representative sites in the management area or field 
and then using laboratory analyses to estimate the mean nutrient content of the bulked sample and 
hence the field. The degree to which the bulked sample is representative of the field as a whole 
depends on the sample design used to select the position of the cores and the number of cores 
extracted. In general the more cores that are included in the bulked sample the more accurate is 
the estimate of the nutrient status within the field but this increased accuracy must be balanced 
against the labour costs associated with extracting extra cores. Recommendations for UK farmers 
suggest that cores should be extracted from a ‘W’ design since this leads to a fairly even spatial 
coverage of the field and hence a reasonably representative bulked sample. However it is known 
that more efficient sampling designs are available (Marchant et al., 2005). 

The recommendations for soil nutrient sampling in RB209 (DEFRA, 2010) and other guidelines are 
largely based on anecdotal evidence of what sampling is sufficient. RB209 suggests that for P and 
K a sample of 25 individual sub-samples will be adequate for a uniform area and that a ‘W’ design 
will ensure an even distribution over the whole field. For soil mineral nitrogen (SMN), RB209 
suggests a minimum of 10 individual sub-samples should be taken from the sampled area and 
more if practically feasible. The HGCA Nitrogen for winter wheat – management guidelines 
suggest at least 15 cores in each field where SMN analysis is undertaken and 20 in more variable 
fields. If it is thought that the farm can be divided into zones of relatively uniform SMN then these 
zones should be analysed separately. Both RB209 and the HGCA guidelines emphasize that costs 
will prohibit SMN analyses in every field and that they are most worthwhile where large and 
uncertain soil nitrogen residues are expected. 

Few studies have attempted to rationally determine the effort which should be devoted to soil 
nutrient sampling and the design which should be used. One exception was a study by Oliver et al. 
(1997) who considered the bulking required for within-field mapping of soil phosphorus (P) and 
potassium (K) rather than the field averages considered here. They suggested that such surveys 
should be conducted on a grid and each observation should consist of 16 bulked cores extracted 
from within an area of 5 m2 about the grid node. This recommendation was based on two surveys 
of around a hundred P and K observations. Sixteen cores were suggested because on the two 
fields they ensured that the sampling errors in estimating the mean nutrient content of the 5 m2 
were less than 1 and 7 mg/l for P and K respectively. This arbitrary criterion does not relate the 
sampling effort to the implications of sampling errors such as loss of soil nutrient status and 
decrease in profits. 

In this study we form a framework to determine the rational sampling effort that directly relates this 
effort to the maintenance of soil nutrient stocks and profitability. Using this framework we can 
compare the effectiveness of different sampling designs and, if suitable information were available, 
we could extend it to test the cost-effectiveness of the actual nutrient management 
recommendations. The framework uses realistic simulations of the variation of soil nutrients in 
fields which are based upon observed soil nutrient data. It is possible to generate thousands of 
these simulations and hence to form reliable averages of the results. 

The situation we consider is where a practitioner makes uniform fertiliser applications across a 
target area (which we nominally refer to as a field) and in which they determine the amount of 
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fertiliser to apply from measurements of soil nutrient status and the RB209 guidelines. In our 
framework the only source of uncertainty is from sampling errors. This means that we assume that 
if perfect soil nutrient information is available the RB209 recommendations will ensure that the soil 
nutrient status and crop yields are exactly as required. We estimate the expected evolution of soil 
nutrient status, crop yields and profit when the management strategies are based on imperfect 
estimates from bulked samples. In our framework, soil nutrient status is simulated across each 
field, different sample designs are used to estimate the average status and the errors associated 
with these estimates are calculated. Mathematical models are used to calculate the effects of these 
errors. Through conducting an ensemble of such simulation tests in different circumstances we 
generate rational recommendations for the soil sampling which should be conducted for soil 
nutrient management. 

Throughout the project, guidance was provided by the steering group consisting of Simon Griffin 
(SOYL), James Holmes (HGCA), Stuart Knight (NIAB TAG) and Peter Taylor (AICC Independent 
Agronomist, Peter Taylor Agronomy Ltd). 

 

3.2. Materials and methods 
3.2.1. Overview 

The computer-based framework developed in this project was designed to test the effectiveness of 
different sampling approaches for soil nutrients. The main components of this framework were (i) 
the simulation of realistic soil nutrient variation within exemplar fields (ii) the sampling of these 
simulations by different approaches and quantification of the expected errors (iii) the use of 
mathematical models to determine the implications of these errors in terms of the evolution of soil 
nutrient stocks and of fertiliser cost and yield, and hence profitability. Once this framework was 
constructed a number of simulation tests were conducted to compare the performance of the 
different sampling approaches in different circumstances. 

 

3.2.2. Simulation of soil nutrient variation within fields 

The comparisons of different sample schemes within this study required thousands of realistic 
simulations of soil nutrient variation within fields. These were generated by geostatistical methods 
and based upon spatial models fitted to existing datasets. The steps in this process were: 

1. Compilation of a database of within-field variation of soil nutrients 
2. Geostatistical estimation of models describing the variation of the soil nutrients 
3. Selection of exemplar fields  
4. Stochastic simulation of soil nutrients concentrations at all grid points within exemplar fields  

 

Compilation of soil nutrient datasets 

The simulations used in this study were based upon statistical models fitted to existing datasets. 
This required geo-referenced within-field data rather than the field scale averages which would 
normally be used to manage field-scale fertiliser applications. The simulations should represent 
variation at the scale of a soil core and therefore ideally each observation within the datasets would 
have been from individual non-bulked soil cores. This is generally the case for observations of 
SMN for precision agriculture research and applications because of the effort involved in collecting 
multiple 90 cm cores to be bulked. For P and K soil cores are generally bulked prior to laboratory 
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analysis because management decisions are made at scales much larger than a single core and 
the variation between different cores collected over a small area is of little relevance for 
management. Therefore our models of P and K variation were initially fitted to measurements from 
bulked cores. Then this variation was downscaled to the core scale using the results of a study by 
Oliver et al. (1997). Within this study single cores were collected from two fields in order to 
determine the amount of bulking required to construct within-field maps of nutrient variation. 

The datasets for P and K were provided by SOYL (SOYL, a division of Frontier Agriculture Ltd) and 
were all collected since 2002. SOYL generally extract samples on a regular square grid of length 
100m but their data include occasional additional observations at closer intervals. Each sample 
consists of 16 bulked cores extracted from an area of 5 m2. As recommended in RB209, P content 
(mg/l) is measured as Olsen’s P and K content (mg/l) by ammonium nitrate extraction following the 
procedures described in Specification for Topsoil (British Standard 3882) or The Analysis of 
Agricultural Materials (MAFF RB427). We consider data from four farms: Hamilton (1998 
observations over two years), Kemble (1467 observations over three years), Welford (1151 
observations over six years) and Roxhill (710 observations over 3 years). SOYL also provided geo-
reference yield data for each field on each farm and details of the crop grown. 

SMN observations were taken from seven previous studies of within-field N variation and two sets 
of measurements on transects. Full details of the sample schemes and analysis techniques used 
are contained in the works cited below. The two transects, one consisting of 256 observations each 
separated by 4 m (Lark et al., 2004) and one consisting of 256 observations each separated by 
29.44 m (Haskard et al., 2010) were both located in Silsoe, Bedfordshire. The longer transect 
included observations from non-arable land which were removed. Observations from four fields in 
Bedfordshire were provided by the University of Reading (Baxter, 2002). These surveys all 
consisted of more than 100 observations and two of them included close pairs of observations so 
that short-scale variation could be explored. A survey of 100 observations on a regular 5 m grid at 
Rothamsted Research Station (Cordova, 2011) and 100 observations on a 50 m grid with 
additional short-scale comparisons from Silsoe (Lark et al., 1998) were also included. The RB209 
recommendations are based on SMN measurements to 90 cm depth. Some of the observations 
collected in these surveys were only measured to 30 or 60 cm but these were scaled to 90 cm 
using factors determined where all three depths (0-30, 30-60 and 60-90 cm) had been recorded. 

 

Models of P and K variation 

The P and K data from each farm were filtered prior to model fitting to only include fields where 
wheat had been grown in the previous season. The procedure described below was used to fit a 
model of variation for each farm. Observations collected in different years were assumed to be 
independent so that the fitted model represented the spatial correlation between observations 
made in a single year.  

Geostatistical models express the spatial dependence of a property in terms of the variogram 
(Webster and Oliver, 2007) which describes how the expected squared difference or semi-variance 
between observations of a nutrient increases with separation distance. Geostatistical models are 
generally based on the assumption that the variable has a Normal distribution. However within-field 
observations of soil nutrients can include extreme values or hotspots which are not consistent with 
this assumption. It is important that our spatial models include the potential for hotspots since they 
will have a large effect on the errors in field-scale estimates based on bulked cores.  
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The models of P and K variation assumed a Generalized Extreme Value (GEV) distribution, rather 
than a Normal distribution. Such a model has previously been used to map soil contamination by 
heavy metals (Marchant et al., 2011). The parameters which describe the GEV include a shape 
parameter which controls the likelihood of hotspots being present. The model has two components 
– the fitted GEV probability density function (pdf) which describes the marginal distribution or 
histogram of the observations and the variogram which describes the spatial correlation between 
observations.  

The full procedure for simultaneously fitting the two components by maximum likelihood is 
described by Marchant et al. (2011). In the current study an approximate procedure was used 
because of the size and number of datasets being considered. Initially the spatial correlation was 
ignored and a GEV distribution was fitted to data from each farm. The observations from each farm 
were then transformed twice: first to their quantile values using the fitted GEV distribution and 
second to an approximate Normal distribution of mean zero and variance one, using the inverse 
Normal distribution function. An exponential variogram was fitted to the approximate Normal 
distribution by maximum likelihood (ML; Webster & Oliver, 2007).  

One of the sampling methods tested was based on the yield map from the previous season. To 
generate this sample design we therefore required a simulation of the yield from the previous 
season which corresponded to a simulation of P or K. These correlated simulations were 
generated from a model known as the linear model of co-regionalization (LMCR) which is often 
used to represent the relationship between spatially correlated soil properties. It describes the 
distances over which the soil properties are related to each other and the strength of this 
relationship. The LMCR was fitted to P or K observations and corresponding yield observations by 
the ML procedure described by Marchant & Lark (2007a). All of the fitted models suggested that 
the relationship between yield from the previous season and observed nutrient content was fairly 
weak. 

 

Models of SMN variation 

RB209 underlines the importance of distinguishing between SMN and SNS. The SMN is the most 
important component of SNS, but SNS also includes the total crop nitrogen content and the 
mineralisable nitrogen in the soil. We describe in Section 3.2.4 how in this project we assume that 
the percentage errors in estimating SNS are identical to the percentage errors in estimating SMN. 
Therefore for the purposes of our calculations the two terms become synonymous. However in a 
more general framework where the errors in estimating the total crop nitrogen content and the 
mineralisable nitrogen were better understood, the distinction would be important. We refer to the 
quantity that is measured from the bulked sample as the SMN and the total of SMN, mineralisable 
and crop N as the SNS. Therefore in the discussion below it is the expected SNS which controls 
the variation of SMN. 

The within-field variation of SMN is known to increase with the mean SNS within a field. For this 
reason the HGCA Nitrogen for winter wheat management guidelines recommend that more 
sampling is conducted on fields where the SNS is expected to be large. To conduct tests that were 
consistent with these recommendations we required a model that explicitly related SMN variability 
to expected SNS. 

The model for SMN assumed that the standard deviation of SMN was linearly related to the 
expected SNS. A single model of this form was fitted to the data from all nine of the SMN datasets 
used in this study. The observations from each dataset were divided by the mean SMN 
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concentration for that dataset. Then an exponential variogram was fitted to the combined scaled 
datasets by ML, assuming that spatial correlation only occurred within datasets and not between 
observations from different datasets. This variogram can be thought of as the spatial model when 
the expected SNS is 1 kg/ha. The model for larger expected SMN concentrations can be 
determined by scaling this model. 

 

Selection of exemplar fields 

The yield maps provided by SOYL were separated on a field by field basis. Therefore the outlines 
of exemplar fields could be extracted from these maps. Six fields of sizes 5, 10, 20, 30 and 60 ha 
(Figure 1) were selected as representative of a range of typical UK arable fields. 

 
Figure 1. Outlines of exemplar fields, coordinates on axes are measured in m. 

 

Simulation of soil nutrient concentrations within exemplar fields 

For P, K and SMN, multiple simulations of the nutrients across each exemplar field were generated 
by an LU simulation algorithm (Webster and Oliver, 2007). This algorithm produces simulations of 
a spatial property which are consistent with its model of variation. For SMN the model fitted in the 
manner described above leads to a realization of mean 1 kg/ha. This is then scaled by the 
expected SMN concentration for the scenario being considered.  

For P and K we used the models fitted to the SOYL data to simulate variation at the 5 m2 scale. An 
additional component of uncertainty is required to downscale this variation to the core scale. The 
size of this component was based on the results of the Oliver et al. (1997) study of bulking 
strategies for P and K. Their results suggested that when the mean P concentration was 21.5 mg/l, 
the additional variance upon down-scaling to a single core from 16 cores over 5 m2 was 
approximately 8.5 (mg/l)2. When the mean K concentration was 294 mg/l, the additional variance 
was 800 (mg/l)2. This additional variation is likely to be larger for larger P and K concentrations, as 
observed in the Netherlands by Brus et al. (1999). We therefore assume that the standard 
deviation of the additional variation is proportional to the mean variation at the 5 m2 scale. Based 
on the observations of Oliver et al. (1997) we assumed that this variation had a coefficient of 
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variation of 0.15 for P and 0.1 for K. A realization of a white noise (i.e. Normal) process with zero 
mean and the appropriate coefficient of variation was added to each simulated value at the 5 m2 
scale. 

 

3.2.3. Quantification of sample errors by different designs 

Proposed sample designs 

The performance of five different types of sample scheme was compared within the project. 
Examples of each of these designs for a bulked sample consisting of 20 cores are shown in 
Figure 2. 

 
Figure 2. Twenty point examples of five sample designs tested in this project. 

 

The ‘W’ design 

The ‘W’ design is commonly used by agronomists to determine the field mean nutrient content and 
is the design recommended in RB209. It requires the practitioner to walk in a ‘W’ pattern across the 
field and extract soil cores at regular distance. The ‘W’ should cover as much of the field as is 
possible. The design is favoured because of its simplicity. There is no need to use statistical 
algorithms or to exactly find sampling sites with a GPS. It does disperse points within the field. 
However there is potential for inefficiency at each apex of the ‘W’ since two cores might be 
extracted close together and as the number of cores increases there is a limit to how accurate the 
estimate of the field mean becomes. This is because sites not on the ‘W’ are never sampled. 
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The optimized design 

The optimized design uses a computational algorithm known as spatial simulated annealing (van 
Groenigen, 1999) to select the sites of soil cores which will lead to the most accurate estimate of 
the field mean. The algorithm uses a formula suggested by Burgess and Webster (1984) to 
calculate the expected error associated with each potential design. This formula is written in terms 
of the spatial model that describes the data. In reality the spatial model for a particular soil nutrient 
will not be known prior to sampling but the sample design that results is very insensitive to the 
assumed model. Throughout this study we consider a simple variogram model where the semi-
variance is always increasing. This leads to designs such as Figure 2, ‘optimized’, where the points 
are evenly dispersed across the study region. In a previous HGCA project (Marchant et al., 2005) 
we demonstrated that an optimized scheme can lead to smaller errors than the ‘W’. 

 

Spatially stratified random sampling 

Stratified random sampling is another method used to ensure that soil cores are fairly evenly 
dispersed throughout the field. A computer algorithm (Walvoort et al., 2010) is used to divide the 
field into a number of continuous sub-regions or strata of equal area. The algorithm ensures that 
these sub-regions are as compact as possible. This means they resemble circles or squares rather 
than long thin shapes. An example of the stratification is shown in Figure 3. A location is selected 
at random within each strata leading to the design shown in Figure 2 ‘stratified’. 

 
Figure 3. The 30 ha field divided into 20 spatial strata. 
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Using expert knowledge 

Where a practitioner has detailed knowledge of the causes of variation in a field or of yield maps 
from previous years, it is possible to incorporate this knowledge in the sample design to make the 
bulked sample more representative of the field as a whole. This is achieved through an iterative 
method known as rank set sampling (Chen et al., 2003). If the bulked sample is to consist of n 
cores, then in the first iteration n sites in the field are selected at random and the expert decides 
which of these sites they expect will have the largest concentration. The first core of the bulked 
sample is taken from this site. The second site is chosen by selecting a different n random sites 
and requesting that the expert selects the site he expects to have the second largest 
concentration. The algorithm continues until the nth site is selected. To some degree, the success 
of this strategy depends on the quality of this expert knowledge, but the theory shows that it is an 
unbiased sampling strategy and never less efficient than simple random sampling. For the 
purposes of this study it is difficult to objectively determine this quality so we replace the expert 
knowledge by the yield map from the previous season, so that the first core is the member of the 
set of randomly located sites with the largest yield. 

 

Bad practice 

The bad practice or clustered design is included to quantify the costs associated with non-
representative sample designs. The first point of this design is chosen at random and then all 
subsequent points are within 30 m of the preceding one leading to the clustering of points seen in 
Figure 2 ‘Bad’. 

 

Simulation tests 

The criterion used in the initial simulation tests is the mean absolute error (MAE) upon estimation 
of the field mean nutrient content by the proposed sample designs described above. One thousand 
simulations of P and K were generated for each combination of the five exemplar fields and the 
fitted models from the four farms. Each simulation was then sampled using the five designs. Four 
of the five designs (‘W’, stratified random sampling, expert knowledge and bad practice) included a 
random component. In the ‘W’ design this arose by varying the distance along the ‘W’ where the 
first core was extracted. Therefore it is probable that chance could cause some realizations of 
these designs to be better than others. This effect was compensated for by generating a unique 
realization of the sample scheme for each nutrient simulation. This was not necessary for the 
optimized design which was generated by a deterministic rather than random method. The actual 
mean nutrient content of each simulated field was recorded along with the estimated means 
according to the different sample designs.  

A similar procedure was followed for SMN sampling with various expected SMN concentrations for 
the field. Again the actual mean SMN for each simulated field was compared with the estimates 
from the different sample designs. 
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3.2.4. Determination of the implications of errors for P and K 

The RB209 fertiliser recommendations for P and K aim to maintain these nutrients within Index 2 of 
the classification. For Olsen’s P this corresponds to levels between 16 and 25 mg/l and for 
extractable K between 121 and 240 mg/l. In conducting this study we assume that the RB209 
recommendations are based on an accurate understanding of the dynamics of soil nutrients and 
that if the soil nutrient content of the soil is known exactly and the recommendations followed then 
the optimal indices will be maintained. However, the errors associated with estimating soil nutrient 
concentrations from a bulked sample will lead to sub-optimal management. The practical effects of 
these errors and the sub-optimal soil management decisions that result were explored via 
mathematical models of the evolution of soil nutrient concentrations. 

 

Mathematical models of long-term temporal variation of field mean soil P and K 

The models of long-term variation of field mean soil P and K accounted for four key processes: 

1. The decision about the amount of fertiliser that is added 
2. The increase in soil nutrients because of this fertiliser 
3. The effect of the soil nutrient concentrations on yield 
4. The loss of nutrients from the soil to the crop 

We note that the Olsen P and ammonium nitrate extract test for K only measure a portion of the 
total P and K in the soil. Our models are expressed in terms of this portion rather than the total 
concentrations to maintain consistency with the measured values. We denote the actual 
concentration of the test portions as PTest and KTest and the estimated concentrations by P*

Test and 
K*

Test. 

 

Fertiliser Decisions 

The RB209 fertiliser recommendations for P and K on cereals are on an index-by-index basis. For 
our mathematical representation of the crop system it was more convenient to assume that the 
additions varied continuously with the P*

Test and K*
Test values rather than jumping at the boundary 

between indices. This was consistent with a practitioner adjusting fertiliser additions for fields at the 
top or bottom of an index. The RB209 recommendations also account for the nutrients that are 
removed by the crop if the desired yield is achieved. RB209 assumes that 7.8 kg of phosphate and 
5.6 kg of potash is lost from the field per tonne of cereal grain yield. The target yield is denoted by 
YT (t/ha). Based on the RB209 recommendations we assumed that when P*

Test< 20 + 7.8 YT: 

F= 80 - 4 P*
Test + 7.8YT,  (1a) 

and when K*
Test < 150 + 5.6 YT: 

F=75-0.5 K*
Test + 5.6 YT,  (1b) 

where F is the amount (kg/ha) of added phosphate for P or potash for K. For larger observed 
nutrient values, no fertiliser was added. 
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Effect of fertiliser additions on soil test values 

Only a proportion of the added fertiliser is partitioned into soil test P and K. For P, this proportion 
was determined by linear regression on unpublished data of P depletion and build-up provided by 
AE Johnston of Rothamsted Research. Observations for K were available from Johnston and 
Goulding (1990). The proportions which resulted were 0.18 for P and 0.34 for K. If we assume that 
the added nutrient is uniformly mixed in the top 30 cm of soil then the increase in soil test values 
must be further scaled by 0.33 to convert from kg/ha to mg/kg. 

 

Yield response to soil-test values 

The relationship between crop yield and soil-test P and K is generally overshadowed by variation in 
SMN and therefore limited suitable data are available to fit a model of this relationship. For P a 
model was fitted to three previously published response curves (Syers et al., 2008; Johnston, 
2005). For K a model was fitted to data from seven yield response experiments (Milford and 
Johnston, 2007, Johnston and Goulding, 1988). In both cases the data corresponded to a range of 
crops so each yield response was normalized such that the yield at the target nutrient level was 
8.8t. The fitted responses were of the form: 

Y=YT (1+A×BN),  (2) 

where Y was the realized yield, N the soil test nutrient value (PTest or KTest), and A and B were fitted 
parameters. The fitted values were A=-1.33 and B= 0.68 for P and A=-2.01 and B = 0.96 for K. The 
yield curves which resulted are shown in Figure 4. 

 

 
Figure 4. Fitted yield responses for P and K. 
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Soil-test nutrient removed by the crop 

Following the RB209 assumptions the total phosphate and potash removed by the crop are 7.8 kg/t 
and 5.6 kg/t respectively. However only a proportion of the P and K will come from the soil-test 
partitions and experiments by Johnston and Poulton (1992) and Johnston (1986) suggest that this 
proportion increases as the soil-test concentrations increase. For P, this proportion was 
approximated by 0.062 + 0.0031 PTest + 0.00017 PTest

2 and for K it was approximated by -0.21 + 
0.0037 KTest. These relationships were fitted to data where the proportion of soil-test P lost varied 
between 0.08 and 0.47 and the proportion of soil-test K lost varied between 0.05 and 0.85. We 
constrained the proportions within these bounds. 

 

Simulation test methodology 

The components described above provide sufficient information to model the long term dynamics 
of P and K in the soil. Our simulation tests considered the long-term effects of different sampling 
strategies on these dynamics. We assumed that at the start of the experiments the soil nutrient 
status was optimal (i.e. PTest = 21 mg/l and KTest = 180 mg/l). The soil was sampled according to the 
specified strategy every four years. The error in estimating the mean field nutrient concentration 
was extracted from each of the 1000 experiments for each nutrient/farm/field combination. The 
models were used to determine the responses when fertiliser management decisions were based 
on the actual nutrient level plus this error. This assumes that changes in the nutrient content are 
uniform throughout the field and that the sampling errors are unaffected by them. 

The annual phosphate additions until the next phase of sampling were determined by substituting 
the observed P*

Test value into Equation 1a. The changes in soil test P which resulted were modelled 
based on the actual concentration PTest. The model system was run until 1000 sampling phases 
had been conducted. The modelling framework ensured that if the observed soil test P was equal 
to the actual soil test P throughout the run then the soil test P would remain at the optimum. The 
errors from sampling P cause the soil test P to fluctuate around the optimum value as shown in 
Figure 5 and the extent of these fluctuations were used to assess the effectiveness of the sample 
scheme. The same procedure was followed for K. 

 

Figure 5. Long term evolution of soil P when mean absolute sampling errors are 5 mg/l (left) and 1 mg/l 
(right). 
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3.2.5. Determination of the implications of sampling errors for SMN 

Since nitrogen is often the limiting factor on crop yield and the effect of nitrogen additions can be 
observed on an annual basis, the cost effectiveness of sampling for N is assessed in terms of the 
effects on these yields and the resultant effects on profit. The relationship between soil nitrogen 
supply (SNS) and observed SMN is complicated and the subject of HGCA Project 3425 
Establishing best practice for SNS estimation. In that project the effect of various factors such as 
the time of SMN measurement, soil texture, rainfall, and sample storage are being considered. 
However for the purposes of this project we assume that the percentage errors in estimating SNS 
are the same as those from estimating SMN. If the relationship between SMN and SNS were to be 
more fully understood then this information could be incorporated into our simulation tests. 

 

Mathematical models of the relationship between profitability and N management 

A previous HGCA project (Sylvester-Bradley et al. 2008) considered the net reduction in profit from 
sub-optimal N management. This project showed that errors of less than 20 kg/ha in determining N 
applications had little effect on the total profit. However the profit decreased rapidly with N 
additions applications that were more than 100 kg/ha from the optimum.  

Our N modelling framework was based on a yield response curve fitted to the data from (Sylvester-
Bradley et al. 2008). The data included 83 trials of the yield response to N for contemporary winter 
wheat cultivars. The fitted linear exponential model was of the form 

Y = a + b × rN -c N (3) 

where N is the SNS kg/ha, Y the yield in t/ha. The fitted parameters were a=37.5, b=-37.8, c=-
0.0362, and r= 0.9976. The yield response curve has a maximum yield of 8.58 t/ha for 380 kg/ha 
SNS. 

When the cost of fertiliser is accounted for, the maximum profit occurs when the derivative of 
Equation (3) is equal to the ratio of the price of fertiliser N (£/kg) to the price of the crop (£/t). This 
ratio is referred to as the breakeven ratio (BER). A formula for the optimal SNS, denoted Nopt, as a 
function of the BER can be determined by calculation of the derivative of (3). The nutrient 
management strategy requires the practitioner to add sufficient fertiliser to match the deficit 
between the SNS prior to fertiliser application and Nopt. In this project we followed the HGCA 
Nitrogen for winter wheat – management guidelines and assumed a BER of 5 and additionally 
assumed a wheat price of £100 / t. Figure 6 shows the losses which occur because of erroneous 
SNS estimation and hence sub-optimal N additions under these assumptions.  

If we denote the error in estimating SMN (and hence SNS) by E (which can be positive or negative) 
and if the practitioner follows the recommendations but bases his decision on the erroneous SMN 
estimate, then the total nitrogen supplied to the crop will equal Nopt + E. The yield which results 
from this application can be calculated from Equation (3). This yield is multiplied by the price of 
wheat to determine the income from the field. The cost of fertiliser and sampling costs are 
subtracted to determine the profit. The sampling costs were based on advice from the project 
steering group and were assumed to be £5.33 per extracted core plus £86 to conduct the 
laboratory analysis of the bulked sample over three depths (0-30, 30-60, 60-90 cm). 
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Figure 6. Reduction in profit because of estimation of SMN and hence sub-optimal N application for BER of 
5 and wheat price £100/t. 

 

Simulation test scenarios 

RB209 and the HGCA Nitrogen for winter wheat – management guidelines both state that the 
variability of SMN increases with expected SNS. Therefore the sampling requirements for N are 
likely to change according to the expected SNS and our simulation tests must account for this. 

We represented the practitioner’s uncertain knowledge of SNS levels prior to sampling by a 
probability density function (pdf). This knowledge would be based on factors such as climate, soil 
type and previous management decisions. The simulation tests quantify the benefits of sampling 
beyond basing N fertiliser management decisions on this prior knowledge. Examples of the pdfs 
used in this study (with modal values of 50, 150 and 250 kg/ha) are shown in Figure 7. The level of 
uncertainty is such that when, for example, the practitioner expects that the SNS is around 50 
kg/ha there is a 2% chance that the actual content is greater than 200 kg/ha. Such an error might 
arise if previous applications have been poorly documented. 

The simulation tests were repeated for circumstances where the modal value of the practitioner’s 
prior SNS pdf were 50, 100, 150, 200, 250 kg/ha. The baseline was the profit which would have 
resulted from determining fertiliser additions from the modal value. The actual expected SNS value 
was randomly selected from the pdf and a simulation generated based on this value. This 
simulation was sampled according to the procedures described in Section 3.2.4 and the field 
estimate of SNS was determined. The profits that result from using this estimated value are 
calculated and the baseline profit is subtracted so that the remaining profit is the benefit from 
sampling. For each sampling configuration being tested this process is repeated 1000 times and 
the average profit above the baseline is recorded. The number of soil cores that leads to the 
largest average profit is the rational sampling effort for the expected SNS.  
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Figure 7. Probability density functions of the practitioner’s prior knowledge of SNS. 

 

When factors such as soil type, previous cropping and fertiliser additions are considered to be 
uniform over a large area the use of barometer fields might be recommended to reduce sampling 
effort. The barometer field is a portion of the total target area. We tested the implications of only 
sampling in 10 ha barometer fields when the target area was 20, 30 or 60 ha. These tests followed 
the same procedure described above. In each simulation we assumed that the target area was 
relatively uniform and that the same expected SMN concentration applied throughout. The 
barometer field was located at the edge of the target area. Again the rational sampling effort was 
determined and the profit which resulted from this rational effort was compared with the profit from 
rationally sampling across the entire target area. 

 

3.2.6. Efficient detection of regions of nutrient excess or deficiency 

In a study of the change in available soil K over a single season, Bishop & Lark (2007) 
demonstrated how a relatively stable nutrient is likely to develop regions of deficiency, ‘coldspots’ 
and excess ‘hotspots’ under uniform application. There is therefore a need to identify coldspots 
and hotspots to avoid limitations on production and emissions to the environment. At present, 
information on spatial variation of properties within fields, where it is collected at all, is obtained on 
square grids, typically with a 100-m interval. However, such practice is unusual, somewhat 
expensive and it might not be sufficient to adequately resolve spatial variation (Oliver and Carroll, 
2004). The resolution of coldspots and hotspots could be improved with more intense sampling but 
the additional labour and laboratory analyses mean that this is unlikely to be cost effective. 

A similar problem exists in surveys of soil pollution which require cost effective methods to 
determine where remediation is required (de Gruijter et al. 2006). Practitioners have noted that the 
laboratory costs are a substantial proportion of the costs of a soil pollution study. They have 
therefore developed sophisticated bulking strategies which reduce the number of laboratory 
analyses that are required without sacrificing the resolution of the maps which result. One such 
approach is the sequential sweep-out method of Gore et al. (1996). We test whether the sequential 
sweep-out method can lead to more efficient identification of soil-nutrient hotspots.  

We consider a situation where soil cores have been collected upon a regular grid within a field. We 
seek to identify the cores for which the soil nutrient concentration is greater than a critical threshold 
with as few laboratory analyses as possible through an efficient bulking strategy. Initially bulked 
samples are formed for each row and column of the sampling grid and the nutrient content of each 
bulked sample is determined. Some soil is held back from each site as this might be required for 
subsequent analyses.  



22 

The maximum possible concentration is then determined for each site in turn based upon the 
measured concentrations of the bulked samples. This maximum corresponds to the situation 
where the site in question is the only one contributing nutrient to the bulked row or column core. If 
all of these maximums are less than the critical threshold then the survey is complete. Otherwise 
the core from the site with the largest attainable value is analysed so that the nutrient concentration 
at this site is known. The concentrations of the two bulked samples which include this site are then 
adjusted to account only for the sites where the concentration is unknown and the maximum 
attainable value at each site is re-calculated. This procedure continues until the maximum 
attainable concentration at each unmeasured site is less than the critical threshold. At this stage an 
indicator kriging method is used to interpolate a map of where the threshold is exceeded based 
upon the knowledge of which cores exceed the threshold. 

We applied this approach for both P and K on a grid of 9 columns and 10 rows each separated by 
50 m. The nutrient values at each site were simulated at each site based in the models of variation 
determined in Section 3.2.2. The sequential sweep-out method was then conducted based on 
these simulated values and the number of analyses required to delineate between the cores above 
and below a specified threshold was determined.  

 

3.3. Results 
3.3.1. Models of spatial variation of soil nutrients 

The fitted models of within-field P (Figure 8) and K (Figure 9) variation all showed evidence of non-
Normal variation. The P pdfs on all four farms had a slowly decaying tail to the right which 
indicated that hotspots of P were present on the farms. The pdfs for K are more symmetric than 
those of P but there is still some evidence of hotspots. There was spatial correlation on all farms 
for both nutrients although the range of this correlation varied between 1 and 3 km. Differences 
between the models of variation on different farms are evident. For P, the right hand tail of the pdf 
decays much more slowly on Kemble and Welford and hence P concentrations on these farms are 
more variable. For K, Kemble has the slowest decaying pdf and Hamilton has larger concentrations 
than the other farms. 

The model of SMN (Figure 10) suggested that SMN is spatially correlated up to around 200 m. 
This is a substantially shorter range than for P and K. The semi-variance between distant 
observations of SMN is 0.29 (kg/ha)2 which corresponds to a coefficient of variation of 0.54. This is 
comparable with coefficients of variation observed in previous SMN surveys, such as those 
reviewed by McBratney and Pringle (1999).  
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Figure 8. Fitted pdfs and variograms for P at (top-bottom) Hamilton, Kemble, Roxhill and Welford. 
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Figure 9. Fitted pdfs and variograms for K at (top-bottom) Hamilton, Kemble, Roxhill and Welford. 
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Figure 10. Fitted variogram model for SMN after scaling by expected SMN. 

 

3.3.2. Simulations of soil nutrient variation within fields 

Spatial correlation and hotspots are evident in all of the simulations of soil nutrients across 
exemplar fields (Figures 11-13). In Figure 12 the simulated yield from the previous season is 
shown alongside the corresponding simulation of K. There is some correlation between the yield 
and the soil-test K but this relationship is fairly weak. The three SMN simulations in Figure 13 are 
scaled by different expected SMN concentrations for the field. As the expected SMN increases 
from left to right, so does the amount of variation within the simulations. 

 

 
Figure 11. Simulated variation of P (mg/l) across the 20 ha field using the model fitted to Hamilton data. 
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Figure 12. Simulated variation of K (mg/l) within 10 ha field using model fitted to Hamilton data (left) and 
corresponding normalized yield map (right). 

 

 
Figure 13. Simulated variation of SMN (kg/ha) for 30 ha field and expected SNS of 50 mg/ha (left), 150 
mg/ha (centre) and 250 mg/ha (right). 

 

3.3.3. Sampling errors for different designs 

The sampling experiments demonstrated that for all three nutrients both the optimized and 
stratified sample designs led to smaller errors than the ‘W’ design (Figures 14-16). With the 
exception of the bad practice design, the errors for all of the designs reduced rapidly as the 
number of cores increased from one to ten. The rate of decrease in errors then slowed. For fewer 
than ten cores the difference between the optimized and ‘W’ designs is small. However for more 
than 20 cores a more obvious difference is evident. The expert design performs slightly worse than 
the ‘W’, optimized and stratified designs. This is probably because of the weak relationship 
between the nutrient concentrations and the expert knowledge (i.e. the yield maps). The errors 
would be reduced by better expert knowledge but the statistical assumptions made about the 
variation of the soil nutrients mean that the expert design will not out-perform the optimized design. 
The errors decay slowly for the bad practice design and illustrate the importance of ensuring that 
the sampled cores are representative of the target area as a whole. 
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Figure 14. Sampling errors for P by different designs averaged over all farms and fields. 

 

 
Figure 15. Sampling errors for K by different designs averaged over all farms and fields. 
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Figure 16. Sampling errors from ‘W’ and optimized designs for SMN on 10 ha field with expected 
concentration of 100 kg/ha. 

 

3.3.4. Implications of sampling errors for soil P and K stocks 

The effectiveness of the sample designs for P and K management are assessed in terms of the 
probability of sampling errors leading to the soil nutrient concentrations being outside Index 2 (16-
25 mg/l for P and 121-240) of the RB209 recommendations. Figure 17 (left) shows how these 
probabilities for P vary with the number of bulked cores for the Kemble farm. For bulked samples 
consisting of fewer than 6 cores there is a substantial probability of the soil concentrations leaving 
Index 2. This quickly decreases with the number of bulked cores and the probability is negligible for 
more than 20 cores. There is very little difference between the W and optimized schemes in terms 
of the number of cores required to ensure that the P concentration leaves Index 2 in less than 2.5 
% of years. However if the target range for P is halved to be between 18.25 and 22.75 (Figure 17; 
right) then more samples are required to maintain this target and the optimal design performs 
substantially better than the W. This reflects the observations in Section 3.3.3 that for more than 20 
cores the errors on using the optimized scheme are substantially less than those for the W 
(Figures 12-13). 
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Figure 17. Comparison of ‘W’ and optimized designs in terms of percentage of years for which soil P 
concentration is outside RB209 Index 2 on 20 ha Kemble field (left) and percentage of years for which soil P 
concentration is outside half of RB209 Index 2 (i.e. 18.25-22.75) on 20 ha Kemble field (right). 

 

3.3.5. Implications of sampling errors for N 

Figure 18 shows the relationship between the expected profit after measuring SMN and the 
number of bulked cores on a 10 ha field with an expected SNS of 100 kg/ha. For this situation the 
largest expected profit of £750.80 per ha results from bulking 8 cores. The difference between the 
profit from using the optimized and ‘W’ schemes is a small proportion of the benefits of sampling. A 
small benefit from using the optimized scheme was seen across the simulation tests for different 
expected SNS levels and field sizes. However it never exceeded £0.20/ha of the benefits of 
sampling and therefore all further results of simulation tests use the W design only. 

 

 
Figure 18. Comparison of ‘W’ and optimized sample designs in terms of total expected profit on a 10 ha field 
with expected concentration of 100 kg/ha. 
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3.3.6. Sampling requirements for P and K 

According to our sampling experiments 10 bulked cores taken from a ‘W’ sample design every four 
years will be sufficient to ensure that both P and K concentrations remain in Index 2 of the RB209 
guidelines for more than 97.5% of years (Tables 1-2). Substantially less sampling is required for K 
than P. There is variation in the sampling requirements on the different farms with only 3 and 4 
cores being required on the less variable farms. In practice if fewer than 4 cores are required then 
the ‘W’ design would not be used but the practitioner would ensure that the cores were extracted a 
large distance apart. 

 

Table 1. Number of cores taken from a ‘W’ every four years required to ensure that field-mean P 
concentration remains in Index 2 for more than 97.5 % of years. 

Farm 5 ha 10 ha 20 ha 30 ha 60 ha 

Hamilton 3 3 3 3 3 

Kemble 7 7 9 9 9 

Roxhill 4 3 3 3 4 

Welford 7 9 8 9 9 

 

Table 2. Number of cores taken from a ‘W’ every four years required to ensure that field-mean K 
concentration remains in Index 2 for more than 97.5 % of years. 

Farm 5 ha 10 ha 20 ha 30 ha 60 ha 

Hamilton 2 2 2 2 2 

Kemble 2 2 2 2 3 

Roxhill 1 1 1 2 2 

Welford 1 1 1 1 2 

 

3.3.7. Cost-effectiveness of SMN measurements and sampling requirements 

The results of the sampling experiments for SMN are shown in Tables 3-8. The optimal intensity of 
sampling increases with both field size and expected SNS (Table 5). More sampling is cost-
effective on larger fields because of the potential for larger total yield and profit. More sampling is 
required when the expected SNS is large because this leads to large within field variability of SMN. 
On the 60 ha fields with expected SNS of 275 kg/ha, 23 cores lead to the largest profit. This is 
slightly greater than the recommendation of 20 cores on variable fields from the HGCA Nitrogen for 
winter wheat – management guidelines. These guidelines suggest that where sampling is 
conducted at least 15 cores should be extracted. However the sampling experiments suggest that 
a smaller number of soil cores might be beneficial on small fields with expected SNS of less than 
50 kg/ha.  

When there is no prior knowledge of the SNS for the target area the optimal number of cores 
increases from 7 cores for a 10 ha field up to 18 cores for a 60 ha field. The extra profits from 
sampling are much greater than when there is prior knowledge of SNS (Table 6). In these ‘no prior 
knowledge’ tests a different SNS value was used for each simulated realization. These values 
were sampled from a pdf which reflected the variability of field mean SNS values within the 
datasets used in this project.  
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In the tests, the measurement of SMN leads to increased profit for all field sizes and expected 
levels of SNS in comparison to the profit which would have resulted from assuming that the SNS 
was equal to the mode of the prior knowledge pdf. Using the modal value of an assumed pdf is 
equivalent to trusting uncertain prior information regarding the soil-nutrient status from sources 
such as the Field Assessment Method. We emphasise that the models used in the tests made 
several assumptions about the relationship between SNS and optimal fertiliser N and the relative 
size of SNS and SMN errors. These assumptions were detailed in Section 3.2.5. If future studies 
provide more detailed information about these relationships then the models may be adjusted and 
the simulation tests repeated. Also, increased profitability from SMN measurement might not arise 
if the prior knowledge of SNS was more certain. In terms of increased profit the largest benefits of 
sampling occur for fields with expected SNS of around 175 kg/ha (Tables 3-4). This is because at 
this SNS level both under- and over-estimates of the SMN lead to substantial inefficiencies and 
loss of profit. In contrast, for SMN of greater than 250 kg/ha only a small amount of N should be 
added and therefore if the SNS is overestimated this will have little effect on the additions and 
hence the profit. Similarly for small SNS, close to the maximum additions will be recommended 
and therefore an underestimate of the SMN will be of little consequence.  

The use of a 10-ha barometer field leads to a decrease in the expected profit (Table 8). However 
for target areas of 30 ha or less and/or expected SNS of 100 kg/ha or less this expected loss is 
less than £50 and possibly not large enough to justify visiting the entire target area. The losses are 
more substantial in other circumstances when the practitioner should consider either using a larger 
barometer field or sampling throughout the target area.  

 

Table 3. Additional profit per hectare from measuring SMN on ‘W’ across target area (£/ha). 

Target Expected SNS 

25 kg/ha 75 kg/ha 125 kg/ha 175 kg/ha 225 kg/ha  275 kg/ha 

5 ha 0.68 4.74 9.66 11.79 9.61 4.66 

10 ha 5.58 10.77 14.97 17.04 15.16 10.20 

20 ha 8.49 13.14 18.28 20.41 17.91 13.46 

30 ha 9.37 13.98 19.01 20.93 19.26 13.93 

60 ha 10.53 15.39 20.25 22.07 19.67 15.09 

 

Table 4. Total additional profit from whole target area upon measuring SMN on ‘W’ across target area (£). 

Target Expected SNS 

25 kg/ha 75 kg/ha 125 kg/ha 175 kg/ha 225 kg/ha  275 kg/ha 

5 ha 3.40 23.71 48.32 58.93 48.05 23.28 

10 ha 55.83 107.65 149.67 170.38 151.57 101.99 

20 ha 169.74 262.80 365.66 408.23 358.28 269.17 

30 ha 281.07 419.43 570.15 627.88 577.71 418.02 

60 ha 631.71 923.10 1214.76 1324.20 1180.41 905.37 
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Table 5. Optimal number of cores on ‘W’ when sampling SMN throughout the target area. 

Target Expected SNS 

25 kg/ha 75 kg/ha 125 kg/ha 175 kg/ha 225 kg/ha  275 kg/ha 

5 ha 3 4 4 5 6 6 

10 ha 4 6 6 8 8 9 

20 ha 5 8 8 10 10 13 

30 ha 7 10 12 12 14 18 

60 ha 10 14 15 18 23 23 

 

Table 6. Optimal number of cores and additional profit from sampling when measuring SMN on ‘W’ 
throughout the target area without prior knowledge of SNS. 

Target Number of cores Extra profit £/ha Extra profit £ 

10 ha 7 43.89 438.93 

20 ha 10 47.46 949.11 

30 ha 14 48.40 1452.01 

60 ha 18 49.96 2997.55 

 

Table 7. Loss resulting from sampling SMN on 10 ha barometer field rather than throughout target area 
(£/ha). 

Target Expected SNS 

25 kg/ha 75 kg/ha 125 kg/ha 175 kg/ha 225 kg/ha  275 kg/ha 

5 ha na na na na na na 

10 ha 0.00 0.00 0.00 0.00 0.00 0.00 

20 ha 0.46 0.63 1.36 1.88 1.87 2.69 

30 ha 0.50 0.56 1.26 1.90 2.45 2.45 

60 ha 0.75 0.59 1.26 1.71 1.87 3.65 

 

Table 8. Lost profit resulting from sampling SMN on 10 ha barometer field rather than throughout target area 
(£). 

Target Expected SNS 

25 kg/ha 75 kg/ha 125 kg/ha 175 kg/ha 225 kg/ha  275 kg/ha 

5 ha na na na na na na 

10 ha 0.00 0.00 0.00 0.00 0.00 0.00 

20 ha 9.25 12.59 27.21 37.51 37.50 53.84 

30 ha 14.88 16.94 37.86 57.08 73.46 73.42 

60 ha 44.89 35.44 75.81 102.37 112.44 219.21 
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3.3.8. Delineation of hotspots and coldspots by sequential sweep-out methods 

Some exemplar results of the sweep-out experiments are shown in Tables 9 and 10. Each 
experiment consists of 90 cores. The number of analyses required to delineate between the above- 
and below-threshold cores decreases as the threshold increases relative to the underlying 
distribution of the nutrient. For example, if the threshold is the 99.9% confidence limit of the 
distribution of P at Welford Farm then 55 analyses are required to complete the sweep-out method. 
This is a saving of 35 analyses upon analysing each individual core. Smaller savings are seen at 
other farms. The farms where the sweep-out methods leads to large savings are those where the 
distributions of the nutrients are most skewed (see Figures 8 and 9). The savings generally 
disappear if the threshold is less than the 95 % confidence limit of the distribution. Hence the 
method is not cost-effective for finding coldspots and the saving for finding hotspots does not 
compensate for the extra complexity of the method and the multiple phases of analysis that are 
required. 

 

Table 9. Number of laboratory analyses required to complete sweep-out method for phosphorus observed at 
90 sites for different critical thresholds. 

Farm Threshold Quantile 

0.5 0.9 0.95 0.99 0.999 

Hamilton 102.7 98.6 95.9 90.0 77.1 

Kemble 102.0 92.6 87.8 72.4 70.3 

Roxhill 102.7 97.6 95.3 90.1 82.3 

Welford 101.9 93.7 90.0 79.1 55.9 

 

Table 10. Number of laboratory analyses required to complete sweep-out method for potassium observed at 
90 sites for different critical thresholds. 

Farm Threshold Quantile 

0.5 0.9 0.95 0.99 0.999 

Hamilton 103.0 99.2 98.6 97.2 94.6 

Kemble 102.6 96.6 94.3 89.5 85.2 

Roxhill 102.9 98.0 96.3 92.2 87.2 

Welford 102.3 95.8 93.0 86.1 74.5 
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3.4. Discussion 
The simulation tests conducted within this project demonstrated that optimized sample designs can 
lead to more accurate estimates of field mean nutrient concentrations than the recommended ‘W’ 
design. For fewer than 10 cores the sampling errors on using the optimized design were only 
slightly smaller than those from the ‘W’. The improvements from the optimized designs were more 
evident when the number of cores to be bulked exceeded 15. Once this sampling intensity had 
been reached negligible further reductions in sampling errors were achievable with the ‘W’ design. 
More significant reductions would have required cores to be extracted away from the ‘W’. 

The soil nutrients observations within the datasets used in this study exhibited non-Normal 
variation caused by local hotspots. The presence of these hotspots increases the expected 
sampling errors and it is therefore important to account for them when making an assessment of 
sampling requirements. For P and K the potential for hotspots was included in the model of 
variation through the assumption of a GEV distribution. The variability of SMN was assumed to 
increase with the expected value. 

When the effectiveness of the sample designs was considered in terms of the long term 
management of P and K stocks or the cost-effectiveness of measuring SMN the benefit from using 
the optimized design instead of the ‘W’ was small. This was because the errors associated with a 
‘W’ design with the appropriate number of cores were small enough that other uncertainties in the 
estimation of nutrient uptake by the crop limited the quality of the fertiliser management 
recommendations. These results suggest that the ‘W’ should continue to be recommended 
because of the simplicity of implementing the design. However if future fertiliser management 
recommendations require more accurate estimates of soil nutrient status then the use of the 
optimized designs should be reassessed. 

The performance of the stratified and expert knowledge sample designs was comparable to the ‘W’ 
however these designs were more complicated to implement. Better quality expert knowledge 
could lead to an improvement in these designs but under the type of nutrient variation assumed in 
this project they would not outperform the optimized scheme. The clustered design performed very 
poorly which is a clear warning of the problems that can arise from haphazard sampling schemes. 

The tests on P and K sampling suggested that bulking 10 cores every four years would be 
sufficient to ensure that soil nutrient levels remained in RB209 Index 2 for more than 97.5 % of 
years. This is substantially fewer cores than the currently recommended 25. The current 
recommendations are designed to ensure that the sampling errors for these nutrients do not 
exceed arbitrary thresholds rather than considering the implications of the errors. The sampling 
requirements for P and K are insensitive to field size. This is because there were two competing 
effects in larger fields which cancelled each other out. The cores were taken from more widely 
dispersed locations and were therefore on average less correlated, but more variation occurred 
within the larger field. 

For SMN, 10-15 cores on a ‘W’ were adequate for most fields. The sampling requirements 
increased with field size and expected SNS. More than 10 cores were warranted for fields of 
greater than 20 ha where the expected SNS was high (defined as >160 kg/ha in RB209). The most 
variable 60 ha fields considered required 23 cores but such fields rarely occur in the UK. Fewer 
than ten cores were cost-effective on some small fields where SNS was likely to be small or 
moderate. However we envisage that the FAM would be used in such circumstances in preference 
to direct measurements. Therefore we generally recommend that bulked samples should be 
formed from 10-15 cores. More than 15 cores would only be required for exceptionally large or 



35 

variable fields. The measurement of SMN was most beneficial when the expected SNS was close 
to 175 kg/ha because at such concentrations both under- and over-estimates of N status have 
substantial implications for profitability. 

The use of 10-ha barometer fields was reasonably effective for management of neighbouring fields 
smaller than 60 ha with expected SMN of less than 100 kg/ha. However for larger or more variable 
fields the use of larger barometer fields or sampling of the entire target area should be considered. 
It should be noted that the barometer field experiments were based on a fixed expected SNS value 
for the whole target area. We have not addressed the problem of how such zones of relatively 
uniform SNS should be delineated. More detailed assessments of the profitability of SMN 
measurement in various circumstances and of the relative effectiveness of the Field Assessment 
Method have been conducted by Kindred et al. (2011). 

In contrast to the P and K scenarios, the SMN experiments required a number of assumptions 
about the price of wheat and fertiliser and the practitioner’s prior knowledge of the SNS. The 
sampling recommendations should be recalculated if any of the parameters change drastically or if 
the relationship between SMN and SNS becomes better understood. In would be possible to 
replace the pdf of the practitioner’s prior knowledge of SNS with one that reflects the expectation 
and uncertainty of SNS according to the Farm Assessment Method. This would require a 
comprehensive dataset of the type collected by Kindred et al. (2011) which observes SNS under 
different conditions. 

The framework developed in this project was the first attempt to relate sampling requirements to 
the implications of fertiliser management decisions. Such a framework can lead to improved 
recommendations in which practitioners can have more confidence. The framework assumes that 
current fertiliser recommendations are appropriate. It could be extended to test the effectiveness of 
the recommendations but this would require further field experiments to be conducted to determine 
the relationships between nutrient levels prior to application, fertiliser additions and crop yields. 
The uncertainty associated with these relationships must be quantified if a thorough cost-
effectiveness study is to be conducted. The experiments should be designed to explain how 
relationships at the scale of experiment plots can be up-scaled to the field scale. A similar 
framework could be used to assess the cost-effectiveness of precision agriculture techniques that 
vary fertiliser additions within the field. 

The sequential sweep-out method proved to be an inefficient way to delineate nutrient hotspots 
and coldspots within a field. This method has previously been effective at determining areas which 
require remediation in studies of soil pollution. In these studies the critical thresholds are often an 
order of magnitude greater than the background concentrations of the pollutant. Such extreme 
behaviour is not seen in our models of soil nutrient variation. 

This project has demonstrated that a mathematical framework can be used to make rational 
recommendations about sampling requirements for soil nutrient management. The framework 
could be expanded to improve the soil nutrient management recommendations themselves by 
integrating new experimental evidence or to develop decision support systems which could operate 
on specific farms and adapt, over multiple seasons, to the requirements of the farm. 

There are many complexities and sources of uncertainty in the soil nutrient management system. 
In the case of N management these include the relationships between observed SMN and realized 
SNS on different soil types and under different climatic conditions. Such issues have been 
addressed in an HGCA project (HGCA Project 3425 Establishing best practice for SNS estimation) 
which investigated these relationships at the plot-scale. What is less well understood is how this 
knowledge can be integrated to the field or management scale to form rational fertiliser 
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recommendations. The discrepancy between the scales at which soil processes are understood 
and the scales at which management measures can be implemented is a familiar issue in other 
environmental systems such as the emissions of ammonia from the soil (Corstanje et al., 2008). It 
is not currently clear whether the uncertainty observed in the plot-scale SNS experiments is 
because of random within-field variation or because of the variation in the nutrient requirements of 
different fields or farms. If it is the former then the effects of this variation will disappear upon up-
scaling. However if it is the later then the variation of nutrient requirements must be understood 
and accounted for before cost-effective recommendations can be devised.  

A number of specific issues relevant to soil N management could be addressed through 
expansions of the mathematical framework presented in this project. These include 

1. How knowledge of soil processes at the plot-scale can be integrated to management 
recommendations at larger scales. 

2. How knowledge of soil type, climate, previous crops can be combined with SMN 
measurements to efficiently determine the N requirements of a particular management 
area. 

3. When management areas are sufficiently uniform for the use of barometer fields to be 
efficient. 

4. When precision agriculture techniques and within-field variation of nutrient inputs is cost 
effective. 

These problems can only be addressed if additional data are collected which explore how the 
variation in the soil N system is divided between the regional, farm and within-field scales. Our 
current understanding can inform how new observations should be divided between these scales 
and how they should be stratified over different soil types and climate regions. 

The question of integrating knowledge from different sources could be addressed by an approach 
used in this project. We formed plausible probability distributions of the knowledge of SMN content 
prior to sampling using expert knowledge. The data from HGCA Project 3425 could be used to 
determine the uncertainty of the Field Assessment Method (DEFRA, 2010) and to describe it by a 
probability distribution. Then this probability distribution could be updated after SMN 
measurements have been made by Bayesian statistical techniques (Cressie & Wikle, 2011). If 
such techniques were used in a decision support system it would also be possible to include 
information from previous seasons.  

The results from this project suggested that barometer fields could be cost-effective but the issue is 
to understand when the management zones are sufficiently homogenous. This could be achieved 
through a Bayesian decision support system which utilizes observations from previous systems 
and suggests locations for new SMN measurements. 

Precision agriculture systems for within-field management will require a detailed understanding of 
the variation of the key relationships in the within-field soil N system. Sweep-out methods proved to 
be inefficient with within field soil nutrient mapping. Therefore we suggest that the use of efficient 
sampling and interpolation techniques (e.g. Marchant & Lark, 2007b) to map the SMN variation 
should be explored.  
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3.5. Conclusions 
• Statistical tools such as the framework developed in this project are required to rationally 

determine the requirements for soil nutrient sampling and to determine when it is cost 
effective to measure nutrients. 

 

• Optimized sample designs perform better than the ‘W’ design for large sample sizes and 
their use should be considered if future management recommendations require more 
accurate soil nutrient information. 

 

• The ‘W’ design is sufficient for current fertiliser management recommendations. 

 

• P and K sampling recommendations can be reduced to 10 cores per field every four years 
from the current 25 cores. 

 

• For SMN 10-15 cores are adequate for most fields. More than 10 cores should be used for 
large fields (>20 ha) or if SNS is expected to be high (>160 kg/ha). More than 15 cores are 
only appropriate for very large fields (>30 ha) where SNS is expected to be high.  

 

• Ten-hectare barometer fields can be effective to infer SNS over similar neighbouring target 
areas of less than 60 ha when the expected SNS is less than 100 kg/ha. In other 
circumstances more widespread sampling should be considered.  

 

• The recommendations for N are based on assumed costs and simplifications of the 
relationship between SMN and SNS. These recommendations should be recalculated if 
costs change drastically or if the relationships become better understood. 

 

• Alternative methods of estimating SNS, such as the Field Assessment Method should also 
be considered. 

 

• Sweep-out methods are inefficient at delineating soil-nutrient hotspots and coldspots and 
should not be adopted. 
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